位置 > 首页 > 教学 > 教育

微积分基本定理揭示了什么

微积分基本定理的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。

微积分基本定理的定义

牛顿-莱布尼茨公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。

它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。

牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可以计算曲线的弧长,*面曲线围成的面积以及空间曲面围成的立体体积,这在实际问题中有广泛的应用,例如计算坝体的填筑方量。


随心一句: 我的情绪只能在这里发泄,然后每天起床一切就像没发生过一样。

随心一句: 你走了,留给我的是无尽的思念。但,即使再不能见到你,有这份真情伴我也就够了。

本站声明:本站部分文章来自网络,如若内容侵犯了原著者的合法权益,可联系我们进行处理。分享仅供大家学习与参考,不**本站立场。

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

相关图片
相关单图
热门图文标签
热门图片标签
热门词条推荐

精美图文推荐

上一篇 下一篇
作者信息
娜小花
(0)赞
2021-09-15 22:52:52
相关专辑
返回首页