位置 > 首页 > 教学 > 教育

二阶可导和二阶连续可导区别

二阶可导和二阶连续可导的区别在于其二阶导数是否连续。函数二阶可导是指函数具有二阶导数,但是二阶导数的连续性无法确定;函数二阶连续可导是指函数具有二阶导数,并且它的二阶导数是连续的。

导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。


随心一句: 锦上添花是哥们雪中送炭是朋友,有福同享有难同当是兄弟,心有灵犀一点通的知己,一生知己不多,就是知己。

随心一句: 生命就好像旅行,在过程中我们可以拥有一些东西,但终究不能带走它。

本站声明:本站部分文章来自网络,如若内容侵犯了原著者的合法权益,可联系我们进行处理。分享仅供大家学习与参考,不**本站立场。

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

相关图片
相关单图
热门图文标签
热门图片标签
热门词条推荐

精美图文推荐

上一篇 下一篇
作者信息
雪中你的背影
(0)赞
2021-09-12 23:55:03
相关专辑
返回首页