位置 > 首页 > 图解小知识

三重积分几何意义

三重积分的几何意义是不均匀的空间物体的质量。三重积分就是立体的质量。当积分函数为1时,就是其密度分布均匀且为1,质量就等于其体积值。当积分函数不为1时,说明密度分布不均匀。

设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ},在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ),作和式Σf(ξᵢ,ηᵢ,ζᵢ)Δδᵢ,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。


火红的枫叶正在昭示着生命的伟大,经过春的萌芽,夏的储藏。

本站声明:本站部分文章来自网络,由用户上传分享,如若内容侵犯了您的合法权益,可联系我们进行处理。文章仅供大家学习与参考,不**本站立场。

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

相关图片
相关单图
热门图文标签
热门图片标签
热门词条推荐

精美图文推荐

上一篇 下一篇
作者信息
MR☪九妹儿
(0)赞
2022-08-14 15:06:02
相关专辑
返回首页