位置 > 首页 > 图解小知识

集合子集个数公式如何证明

如果一个集合的元素有n个,那么它的子集有2的n次方个(注意空集的存在),非空子集有2的n次方减1个,真子集有2的n次方减1个,非空真子集有2的n次方减2个。

如果元素少的话可以用枚举法,不过最好的方法还是用二项式定理做。

例如:已知一个集合里有n个元素(下面的C**组合,其中nCr**从n个元素内选取r个元素进行组合)

首先子集中元素有0个的有[nC0]

子集元素有1个的有[nC1]

子集元素有2个的有[nC2]

……

子集元素有m个的有[nCm]

……

子集元素有n-1个的有[nC(n-1)]

子集元素有n个的有[nCn]

所以一个有限集合内有[nC0]+[nC1]+[nC2]+……+[nCm]+……+[nC(n-1)]+[nCn]


成熟的人在于认识了自己,从而做自己所能做的事,享受自己所能享受的生活。

本站声明:本站部分文章来自网络,由用户上传分享,如若内容侵犯了您的合法权益,可联系我们进行处理。文章仅供大家学习与参考,不**本站立场。

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

相关图片
相关单图
热门图文标签
热门图片标签
热门词条推荐

精美图文推荐

上一篇 下一篇
作者信息
3169894273
(0)赞
2022-06-08 01:25:14
相关专辑
返回首页