位置 > 首页 > 图解小知识

收敛级数乘以收敛级数

收敛级数乘以收敛级数有可能是收敛的,比如一个常数级数0, 它乘以任何级数都收敛。也有可能是发散的,比如收敛的交错级数,(-1)^n*/n 跟发散的级数(-1)^n相乘会给你调和级数。

发散级数指不收敛的级数。一个数项级数如果不收敛,就称为发散,此级数称为发散级数。一个函数项级数如果在(各项的定义域内)某点不收敛,就称在此点发散,此点称为该级数的发散点。

收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后,它的收敛性不变;两个收敛级数逐项相加或逐项相减之后仍为收敛级数;在级数前面加上有限项,不会改变级数的收敛性;原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;级数收敛的必要条件为级数通项的极限为0。


有什么样的心态就会有什么样的人生,我们保持积极的人生态度,就会取得较大的成功。

本站声明:本站部分文章来自网络,由用户上传分享,如若内容侵犯了您的合法权益,可联系我们进行处理。文章仅供大家学习与参考,不**本站立场。

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

相关图片
相关单图
热门图文标签
热门图片标签
热门词条推荐

精美图文推荐

上一篇 下一篇
作者信息
丫头消失吧i
(0)赞
2022-02-17 08:24:54
相关专辑
返回首页