可导必连续,不连续必不可导
1、连续性判断:看看定义域内有没有不连续点,如果有不连续点则证明不连续,反之连续。
2、可导性进一步判断:
如果一个函数的定义域为全体实数,即函数在其上都有定义,那么该函数在定义域上处处可导。函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。
不夜城里回忆的毒,你的真心遗失半路,遗忘不算辜负。
本站声明:本站部分文章来自网络,由用户上传分享,如若内容侵犯了您的合法权益,可联系我们进行处理。文章仅供大家学习与参考,不**本站立场。
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z