描述变量离散趋势的常用指标包括:极差、四分位数间距、方差、标准差、标准误差和变异系数等,其中方差和标准差最常用。离散趋势适用情况:均数相差不大,单位相同的资料。
极差
极差是一组数据的最大值(xmax)与最小值(xmin)之差,通常用 R 表示。
对于总体数据而言,极差也就是变量变化的范围或幅度大小,故也称为全距。
组距数列中,极差≈最高组的上限-最低组的下限。
优缺点:计算简便、含义直观、容易理解。它未考虑数据的中间分布情况,不能充分说明全部数据的差异程度。
四分位数间距
第3四分位数(Q3)与第1四分位数(Q1)之差,常用Qd表示。计算公式为:
实质上是两端各去掉四分之一的数据以后的极差,表示占全部数据一半的中间数据的离散程度。
四分位差越大,表示数据离散程度越大。
是在一定程度上对极差的一种改进,避免了极端值的干扰。但它对数据差异的反映仍然是不充分的。
四分位差是一种顺序统计量,适用于定序数据和定量数据。尤其是当用中位数来测度数据集中趋势时.
*均差——各个数据与其均值的离差绝对值的算术*均数,反映各个数据与其均值的*均差距,通常以A.D表示。*均差含义清晰,能全面地反映数据的离散程度。但取离差绝对值进行*均,数学处理上不够方便,在数学性质上也不是最优的。
方差
方差是各个数据与其均值的离差*方的算术*均数.
标准差
标准差比方差更容易理解。在社会经济现象的统计分析中,标准差比方差的应用更为普遍,经常被用作测度数据与均值差距的标准尺度。
离散系数是极差、四分位差、*均差或标准差等变异指标与算术*均数的比率,以相对数的形式表示变异程度。
将极差与算术*均数对比得到极差系数,
将*均差与算术*均数对比得到*均差系数。
最常用的离散系数是就标准差来计算的,称之为标准差系数:
离散系数大,说明数据的离散程度大,其*均数的**性就差;反之亦然.
随心一句: 母亲对儿女的付出,就像温暖的阳光和甘甜雨露。儿女对母亲的爱恋,就像绿叶对根的情意。无论走到天涯海角,母亲永远是我们最深的牵挂。恭祝母亲节日快乐!
随心一句: 这颗心被你蚀去装满你的影子,没有蚀去的部分却塞满对你的相思。你知道么?
本站声明:本站部分文章来自网络,如若内容侵犯了原著者的合法权益,可联系我们进行处理。分享仅供大家学习与参考,不**本站立场。